
GOM
THE	GOBJECT	MAPPER

Christian	Hergert
<christian@hergert.me>

#GUADEC2014



WHAT	IS	AN	OBJECT	MAPPER?

Bridges	an	Object's	properties	to/	from	 	storage.
It	also	provides	an	interface	to	query	 	existing	items.	
Deleted	items	are	truncated	from	storage. 	



GOM	API	DESIGN



RESOURCE
GomResource	is	your	data	object's	Parent	GObject.

It	provides	lots	of	helper	functions.

Set	Primary	Key	for	Class
Set	Database	Table
Save	(a)synchronously
Delete	(a)synchronously
Fetch	relation	via	many-to-many	table
Configure	custom	GValue<->SQLite	translators



CLASS	INHERITANCE
Resources	can	inherit	from	other	resources.
Resource	->	Shape	->	{Rectangle,	Circle}

GOM	will	automatically	join	inheritance	tables	for	you	in	CRUD
operations.



REPOSITORY
Resources	save-into	and	are	retrieved-from	a	Repository.

¡This	should	generally	be	performed	asynchronously!

Repositories	contain	all	of	your	data	objects.

You	typically	only	need	one	per-process.
Consider	it	your	data	Singleton.



ADAPTER
Adapter	is	responsible	for	translating	repository	operations	into

storage-layer	operations.

Currently,	only	SQLite	is	supported.

A	GVariant	based	adapter	would	be	lovely.



RELATIONSHIPS
You	are	responsible	for	inflating	relating	structures.

Resource	provides	helpers	to	simplify	this.

Use	an	accessor	to	fetch	the	relation	asynchronously	so	it	need
not	be	inflated	upfront.

Clearly	there	is	room	for	improvement	here.



RESOURCE	GROUP
A	lazy	collection	of	Resources.

Can	enforce	type	of	contained	objects	(Generics).

You	can	inflate	ranges	of	the	result	asynchronously.
Great	for	"infinite	scroll"	scenarios.



FILTER
Filters	are	used	to	query	a	repository.

A	Filter	attached	to	a	ResourceGroup	would	fetch	all	objects	of	a
given	type	matching	said	Filter.

Think	of	Filter	as	the	WHERE	clause	of	a	SQL	statement.



COMMAND
Command	allows	for	direct	access	to	storage	layer.

Run	a	SQLite	statement.
Used	by	Resource	for	CRUD	operations.
Can	return	a	Cursor	for	iterating	result	set.



CURSOR
Abstracts	iteration	of	the	result	set.

Also	handles		marshaling	out	of	SQLite.
Helpers	to	access	known	types,	or	just	get	a	GValue.



SCHEMA	GENERATION
Support	for	auto-generating	schema	from	property	information.

Support	for	automatically	performing	migrations.	(Will	never
delete	columns).

Alternatively,	you	can	handle	this	all	manually	with	the	migration
callback.



TRANSACTIONS?
Not	today.

You	can	emulate	them	via	a	write-callback	in	the	SQLite	thread.
(Just	no	write	concurrency).



GOBJECT	INTROSPECTION
Not	quite	there	yet.

Need	to	figure	out	how	to	integrate	class-level	functions.

Excited	for	cross-language	potential.

Potential	for	a	LibSoup	based	web	server	with	handlers	in	various
languages	(sharing	data	model	and	connections).



DEMO	TIME!



CODE	COMPLETION
Let's	keep	it	simple,	we	just	have	 symbols.

Symbols	have	a	type	and	a	name.



CODE	COMPLETION
Symbol
id:	Integer
name:	String
type:	Enum



CODE	COMPLETION
CodeSymbol	inherits	GomResource

enum	CodeSymbolType



CODE	COMPLETION
CodeSymbolCompletionProvider	implements

GtkSourceCompletionProvider

Queries	GomRepository	for	CodeSymbol
with	:name	LIKE	'foo%'.

Terribly	naive	in	terms	of	code	completion,	but	quick	and	easy.



LET'S	RUN	IT



QUESTIONS?
https://git.gnome.org/browse/gom

https://github.com/chergert/gom-talk-demo

And	a	special	thanks	to	all	our	contributors!


